
Portex

OpenBytes

Dec 01, 2022

CONTENTS

1 Data Storage 3

2 Portex 5
2.1 Basic Syntax . 5
2.2 Nullable Type . 5
2.3 Primitive Types . 6
2.4 Complex Types . 7
2.5 Temporal Types . 11
2.6 Type Import . 13
2.7 Template Type . 17

i

ii

Portex

This documentation defines Portex. It is a table-structed data definition language designed for both structed-data and
unstructed-data.

CONTENTS 1

Portex

2 CONTENTS

CHAPTER

ONE

DATA STORAGE

Portex is designed for a table-structed data storage system, which has the following features:

• Strongly typed: The type of the data in each column MUST be the same

• Support storing the binary file

• Support storing nested table

3

Portex

4 Chapter 1. Data Storage

CHAPTER

TWO

PORTEX

Portex is a language for describing the data structure of the objects stored in the table. It defines the name and the type
of each table column. It also tells the data user how to access the data in the table.

Portex is defined with JSON, this doc uses yaml to represent JSON objects for better legibility.

2.1 Basic Syntax

Here is the basic syntax of Portex:

type: <type>
<type-param 1>: <value 1>
<type-param 2>: <value 2>
...: ...
...: ...

Portex provides the basic key type. Its value means the type of data and presented by a JSON string. The bulitin
supported types can be found in Primitive Types and Complex Types.

The most important feature of Portex is that the type is configurable, different types has different parameters.

For example, the enum type has parameters values to indicate the possible values of the enum.

So an enum of "dog" and "cat" can be defined:

type: enum
values: ["dog", "cat"]

Besides the builtin types, the customized types can also be configurable, check Template Type for more details.

2.2 Nullable Type

Portex provides a common parameter nullable for all types to indicate whether the value can be null.

5

https://www.json.org/json-en.html

Portex

name type required default description
nullable JSON boolean False False

Default to False,
which means all
types are not
nullable by default.
Setting to True
allows the stored
value to be null.

Examples:

Nullable 32-bits signed integer:

type: int32
nullable: true

2.3 Primitive Types

Portex provides a set of primitive types:

2.3.1 boolean

The boolean type represents a binary value, only two values are supported: true and false

2.3.2 binary

The binary type represents a sequence of 8-bit unsigned binary.

2.3.3 string

The string type represents a sequence of UTF-8 encoded characters.

2.3.4 numeric types

There are four numeric types in Portex, they share the same parameters.

• int32: 32-bit signed integer.

• int64: 64-bit signed integer.

• float32: single precision (32-bit) IEEE 754 floating-point number.

• float64: double precision (64-bit) IEEE 754 floating-point number

Examples:

1. 32-bits signed integer:

6 Chapter 2. Portex

Portex

type: int32

2. single precision floating-point number:

type: float32

2.4 Complex Types

2.4.1 enum

The enum type represents a value which is restricted in a fixed set of values.

The parameter values is provided for enum to indicate the set of values. It is a JSON array with at least one element,
where each element is unique.

name type required description
values JSON array True Contains at least one element, and each element is unique.

Examples:

1. enum to represent colors

type: enum
values: [red, yellow, blue]

2. enum to represent animals

type: enum
values: [dog, cat, bird]

2.4.2 record

The record type is where a user can define complex data structures by grouping related variables together in the same
place. It is similar to struct in C++ or the Series in pandas. It is preferred to use record to hold the grouped data
in each row, and a column, in Portex, is a series of records of the same type.

The parameter fields is used in the record to define the member vairables. Each field should have a name and a
type. The fields is defined in a one dimentional array manner, so it can easily be expanded into a multi-column row.

2.4. Complex Types 7

Portex

name type required description
fields JSON array True

It is a one dimentional
array. Each element in the
array
represents a member
variable of the record.
The member variables are
ordered.

fields.<index> JSON object True One element in the array,
which represents a mem-
ber variable of the record.

fields.<index>.name JSON string True The name of the member
variable.

fields.<index>.type JSON string True

The type of the member
variable. It does not have
to be a primitive type.
It could be any type
defined in the context.

fields.<index>.
<type-param>

- False Type related parameters.

Examples:

1. a 2D point which uses x and y to represent its coordinates:

type: record
fields:
- name: x
type: int32

- name: y
type: int32

In a tabular view:

x y
<x coordinate> <y coordinate>

2. a student record which contains the basic information of a student:

type: record
fields:
- name: name
type: string

(continues on next page)

8 Chapter 2. Portex

Portex

(continued from previous page)

- name: gender
type: enum
values: [male, female, other]

- name: age
type: int32

- name: student number
type: string

In a tabular view:

name gender age student number
<student name> <student gender> <student age> <student number>

3. a 2D line which is represented by two 2D point coordinates:

type: record
fields:
- name: point1
type: record
fields:
- name: x
type: int32

- name: y
type: int32

- name: point2
type: record
fields:
- name: x
type: int32

- name: y
type: int32

In a tabular view:

point1 point2
x y x y
<x coordinate> <y coordinate> <x coordinate> <y coordinate>

This example shows the record can be nested, it can be used to support the multi-indexing feature in a columnar
store.

2.4. Complex Types 9

Portex

2.4.3 array

The array type represents a sequence of elements which have the same type.

Type array has two parameters items and length:
- items is used to indicate the type of the items in the array.
- length is used to indicate the length of the array.

name type required default description
items JSON object True - -
items.type JSON string True - Represent the type

of the items in the ar-
ray.

items.
<type-param>

- False - Represent the type
parameter of the
items in the array.

length JSON integer False null

Represent the
length of the array,
used to define an
array with a fixed
length.

Examples:

1. an int32 array with unlimited length:

type: array
items:
type: int32

2. an int32 array with fixed length:

type: array
items:
type: int32

length: 2

3. a polygon represented by its vertex coordinates:

type: array
items:
type: record
fields:
- name: x
type: int32

(continues on next page)

10 Chapter 2. Portex

Portex

(continued from previous page)

- name: y
type: int32

when the item type is record, the behavior of an array will change to a table:

Note: array + record = table

A record can be understood as a row in the table, then array put many rows together to get a table.

So the polygon array can be visually represented in table structure:

x y
<x coordinate> <y coordinate>
<x coordinate> <y coordinate>
<x coordinate> <y coordinate>
<x coordinate> <y coordinate>
<x coordinate> <y coordinate>
.

2.5 Temporal Types

Portex provides a set of temporal types:

2.5.1 date

The date type represents a date in a calendar without timezone or time of day.

The storage type of date is int32. It represents the days since UNIX epoch 1970-01-01.

Examples:

A date object:

type: date

2.5.2 time

The time type represents a time of day, independent of any particular calendar, timezone or date.

The parameter unit is provided for time to indicate time resolution.

2.5. Temporal Types 11

Portex

name type required description
unit JSON string True

The time resolution,
support s, ms, us and ms:
- s for second
- ms for millisecond
- us for microsecond
- ns for nanosecond

The s and ms time will be stored as int32 and us and ns time will be stored as int64. And it represents an offset
from 00:00:00 with the giving unit.

Examples:

A time with millisecond resolution:

type: time
unit: ms

2.5.3 timestamp

The timestamp type represents a time of day with date.

Type timestamp has two parameters unit and tz:
- unit is used to indicate time resolution.
- tz is used to indicate the timezone info.

name type required description
unit JSON string True

The time resolution,
support s, ms, us and ms:
- s for second
- ms for millisecond
- us for microsecond
- ns for nanosecond

tz JSON string False

The timezone info, default
to naive timestamp.
Supported timezone list:
TZ_LIST

The storage type of timestamp is int64. It represents an offset from 1970-01-01T00:00:00 with the giving unit.

12 Chapter 2. Portex

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Portex

Examples:

1. A naive timestamp with millisecond resolution:

type: timestamp
unit: ms

2. A aware timestamp with microsecond resolution and timezone info is Asia/Shanghai:

type: timestamp
unit: us
tz: Asia/Shanghai

2.5.4 timedelta

The timedelta type represents a time duratiion, the difference between two dates or times.

The parameter unit is provided for timedelta to indicate time resolution.

name type required description
unit JSON string True

The time resolution,
support s, ms, us and ms:
- s for second
- ms for millisecond
- us for microsecond
- ns for nanosecond

The storage type of timedelta is int64. It represents an time offset with the giving unit.

Examples:

A timedelta with millisecond resolution:

type: timedelta
unit: ms

2.6 Type Import

Portex supports Type Import, which means the schema structure can be defined and shared in the community.

A package is used to distribute a group of pre-defined types. And these types can be imported from the package.

Tip: Just like a programming language, Portex also uses packages for distributing pre-defined types. Take python as
an example. Python package is used to distribute a set of functions which can be reused.

2.6. Type Import 13

Portex

The git repository is used as a carrier for a schema package. A schema package is distributed, developed, and imported
through a public git repository.

OpenBytes defines a set of standard formats for open datasets. These formats are put on a Github repo and distributed
as a schema package whose url is https://github.com/Project-OpenBytes/portex-standard.

2.6.1 How to build a schema package?

1. Create a remote git repo;

2. Commit a file named ROOT.yaml to indicate the root path of the schema;

3. Commit the schema structure files which need to be reused into the git repo.

2.6.2 How to import types from a package?

1. Use Parameters imports to indicate what types needs to be imported and which package these types come from;

2. Put the schema structure name or alias which needs to be referenced in the type field.

Parameters

The parameter imports is provided for type importing, and it should be put on the top level of the schema definition
file.

14 Chapter 2. Portex

https://github.com/Project-OpenBytes/portex-standard

Portex

name type required description
imports

JSON
array

False

A JSON object which
indicates what types
needs to
be imported and which
package these types come
from.

imports.<index>

JSON
object

True

Each item in the imports
array indicates a group
of imported types which
come from a same
package.

imports.<index>.
repo

JSON
string

True

The url and the revision
of the schema package,
which follows the
following format:
“<url>@<rev>”.

imports.<index>.
types

JSON
array

True

A JSON array to indicate
the types needs to be
imported from the
package to this file.

imports.<index>.
types.<index>

JSON
object

True

Each item in the
imports.<index>.
types

array indicates one
imported type.

imports.<index>.
types.<index>.name

JSON
string

True

The name of the imported
type which follows
the Dot Syntax

imports.<index>.
types.<index>.alias

JSON
string

False

The alias of the imported
type. If this field is given,
it will replace the
imports.types.
<index>.name
as
the unique identifier of the
imported type. This field
is useful for solving the
type name conflicts in
different packages.

2.6. Type Import 15

Portex

Dot Syntax

The doc syntax is used for referencing pre-defined type.

Dot syntax is:

1. Based on the file path of the schema structure file;

2. Use dot . to replace the file separator (/ for Linux and \ for Windows);

3. Remove the file extension.

For example, there is a schema repo with the following file structure:

.
geometry

Vector2D.yaml
Vector3D.yaml

ROOT.yaml # the ROOT.yaml file is used to indicate the root of the schema package.

The schema file geometry/Vector2D.yaml needs to be written as geometry.Vector2D for referencing.

Example

For example, two pre-defined types Vector2D and Vector3D need to be imported from a Github repo, whose url is
https://github.com/Project-OpenBytes/portex-standard and the tag is v1.0.0.

The repo file structure is:

.
geometry

Vector2D.yaml
Vector3D.yaml

ROOT.yaml # the ROOT.yaml file is used to indicate the root of the schema package.

Here is how the Vector2D and Vector3D are imported:

imports:
- repo: https://github.com/Project-OpenBytes/portex-standard@v1.0.0

Use "<url>@<rev>" format to # point out␣
→˓where the

source code comes from.
types:
- name: geometry.Vector2D # Use "dot syntax" to point out the type␣

→˓defined in
"geometry/Vector2D.yaml" that needs to be␣

→˓imported
to this file.

- name: geometry.Vector3D
alias: Vector3D # Use "alias" field to rename the imported␣

→˓type.
"alias" will replace the origin name as␣

→˓the unique
identifier. Which means "geometry.Vector3D

→˓" will
(continues on next page)

16 Chapter 2. Portex

https://github.com/Project-OpenBytes/portex-standard

Portex

(continued from previous page)

be treated as illegal name. Only "Vector3D
→˓" can be

used for referencing the imported type.

type: record
fields:

- name: point2d
type: geometry.Vector2D # Use the "name" defined in the "imports" field to␣

→˓reuse
the pre-defined type.

- name: point3d
type: Vector3D # Use the "alias" defined in the "imports" field to␣

→˓reuse
the pre-defined type.

2.7 Template Type

One of the most important features in Portex is configurable type, different types provide different parameters to adjust
their behaviors.

Such as enum type provide values, record type provides fields etc.

2.7.1 Parameters

Portex provides template type to define customized configurable types.

Two parameters are provided in template type:
- parameters is used to indicate the parameters.
- declaration is used to indicate how the parameters take effect.

2.7. Template Type 17

Portex

name type required description
parameters

JSON
array

False Indicate all the parameters
for this template.

parameters.<index>

JSON
object

True

Each element in
parameters defines a
parameter.

parameters.<index>.
name

JSON
string

True The name of the parame-
ter.

parameters.<index>.
default

- False

The default value of the
parameter.
The parameter is optional
if the default value is set.
The parameter is required
if the default value is not
set.

parameters.<index>.
options

JSON
array

False

An array to list all
possible values.
Parameter value not listed
in the array will not be
accepted.

declaration

JSON
object

True

The declaration of
template, use $<name> to
indicate how different
parameters take effect in
the template.

declaration.type

JSON
string

True The type of the template.

declaration.
<type-param>

- True The parameters of the ac-
tual type.

Examples:

1. A 2D point type:

18 Chapter 2. Portex

Portex

geometry/Point.yaml

type: template
declaration:
type: record
fields:
- name: x
type: int32

- name: y
type: int32

after definition, this Point type can be referenced:

type: record
fields:
- name: point1
type: geometry.Point

- name: point2
type: geometry.Point

it can be visually represented in table structure:

point1 point2
x y x y
<int32 value> <int32 value> <int32 value> <int32 value>

2. A 2D point type with configurable label:

geometry/LabeledPoint.yaml

type: template
parameters:
- name: labels # "labels" is a required parameter

declaration:
type: record
fields:
- name: x
type: int32

- name: y
type: int32

- name: label
type: enum
values: $labels # the values of enums depend on the input "labels"

after definition, this LabeledPoint type can be referenced:

2.7. Template Type 19

Portex

type: record
fields:
- name: labeled_point
type: geometry.LabeledPoint
values: ["visble", "occluded"]

it can be visually represented in table structure:

labeled_point
x y label
<int32 value> <int32 value> <”visble” or “occluded”>

Error: Setting the type name as a parameter, as shown in the following example, is not allowed in Portex.

geometry/Point.yaml

type: template
parameters:
- name: coords
default: int32 # $coords represent the name of the type

declaration:
type: record
fields:
- name: x
type: $coords # The type name should be put after keyword "type:"

set the type name as parameter is not allowed in Portex

- name: y
type: $coords

Note: Check the object unpack syntax for creating a template type with configurable internal types.

2.7.2 Parameter “exist_if”

Portex provides a special parameter exist_if to control whether a field in record exists.

When declaration.type is record, the parameter declaration.fields.<index>.exist_if can be used to
control whether the field exists.

name required default description
declaration.fields.
<index>.exist_if

False True

The field exists if the
value of exist_if is not
null,
otherwise it does not.

20 Chapter 2. Portex

Portex

Examples:

a Point type with or without a enum label:

geometry/Point.yaml

type: template
parameters:
- name: labels
default: null

declaration:
type: record
fields:
- name: x
type: int32

- name: y
type: int32

- name: label
exist_if: $labels # When "labels" is not "null", the "label

→˓" field exists,
type: enum
values: $labels

after definition, this Point type can be referenced with a parameter labels:

type: record
fields:
- name: point
type: geometry.Point

- name: labeled_point
type: geometry.Point
labels: ["visble", "occluded"]

it can be visually represented in table structure:

point labeled_point
x y x y label
<int32 value> <int32 value> <int32 value> <int32 value> <”visble” or “occluded”>

2.7. Template Type 21

Portex

2.7.3 Unpack Syntax

Portex provides unpack syntax for JSON object and JSON array in template type.

Object unpack

Portex use + symbol for object unpack, it is used to unpack the JSON object parameter and merge it into another JSON
object.

This syntax is used to create the template type whose internal type is configurable. Just like the builtin array type, the
type of the array elements can be configured by its items parameter

Note: Portex object unpack is similar with YAML merge key.

Examples:

1. A 2D point type with configurable coordinate type:

geometry/Point.yaml

type: template
parameters:
- name: coords
default: # "coords" is not a required parameter
type: int32 # the default value of "coords" is '{"type": "int32"}

→˓'

declaration:
type: record
fields:
- name: x
+: $coords # use object unpack symbol "+" to unpack $coords

which makes the coordinate type configurable
$coords should be a JSON object

- name: y
+: $coords

after definition, this Point type can be referenced with a parameter coords:

type: record
fields:
- name: point1
type: geometry.Point
coords:
type: float32 # set the coordinate type to "float32"

- name: point2
type: geometry.Point # use the default type "int32"

it can be visually represented in table structure:

22 Chapter 2. Portex

https://yaml.org/type/merge.html

Portex

point1 point2
x y x y
<float32 value> <float32 value> <int32 value> <int32 value>

Array unpack

Portex also use + symbol for array unpack. The syntax +$<name> is used to unpack the JSON array parameter and
merge it into another JSON array.

This syntax can be used to extend the record fields.

Examples:

1. A 2D point type with extensible fields:

geometry/Point.yaml

type: template
parameters:
- name: extra
default: [] # the default value is an empty array, which means add no␣

→˓fields

declaration:
type: record
fields:
- name: x
type: int32

- name: y
type: int32

- +$extra # use "+$<name>" syntax to unpack the parameter "extra"
which makes the record fields extensible
$extra should be a JSON array

after definition, this Point type can be referenced with a parameter extra:

type: record
fields:
- name: point1
type: geometry.Point
extra:

- name: label # set "label" as a extra field
type: enum
values: ["visble", "occluded"]

- name: point2
type: geometry.Point # the default behavior is no extra field

it can be visually represented in table structure:

2.7. Template Type 23

Portex

point1 point2
x y label x y
<int32 value> <int32 value> <”visble” or “occluded”> <int32 value> <int32 value>

24 Chapter 2. Portex

	Data Storage
	Portex
	Basic Syntax
	Nullable Type
	Primitive Types
	boolean
	binary
	string
	numeric types

	Complex Types
	enum
	record
	array

	Temporal Types
	date
	time
	timestamp
	timedelta

	Type Import
	How to build a schema package?
	How to import types from a package?
	Parameters
	Dot Syntax
	Example

	Template Type
	Parameters
	Parameter “exist_if”
	Unpack Syntax
	Object unpack
	Array unpack

